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Computer modelling of porous silicon formation 
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Porous silicon formation has been simulated by the finite diffusion-length (FDL) model. This 
considers a dynamic isoconcentration profile from which the aggregating particles begin 
their random walks. In this paper we report on the isoconcentration profile non-uniformities 
which increase as the finite diffusion length is increased. The implementation of the FDL 
model with zero diffusion length generates non-fractal structures with a fractal dimension 
close to 1. It is found that Eden clusters cannot be generated at zero diffusion length, due to 
the problem of "sinking isoconcentration profile". We conclude that these are limitations 
that should be considered in the FDL model for improving the understanding of physical 
phenomena such as formation and morphology of porous silicon. 

1 .  I n t r o d u c t i o n  

The observation of efficient visible photoluminescence 
from porous silicon [1] has important implications for 
materials research on silicon optoelectronics. In view 
of this, many models to explain the mechanism of 
formation of porous silicon are being investigated. 
Electrochemical anodizing can lead to porous silicon 
formation at lower current densities, while electro- 
polishing occurs at higher current densities. Other 
factors which influence porous silicon morphology 
and formation are ambient light conditions, doping 
type and concentration in the substrate material and 
electrochemical anodization parameters. The origin of 
photoluminescence is also not established and porous 
silicon having morphological features of a few nano- 
metres [2], as well as porous silicon having up to 
1000-nm silicon columns have been shown to be 
photoluminescent [3]. The observation of photo- 
luminescence quenching by chemical treatments sug- 
gests surface chemical species are very important for 
photoluminescence [4]. Several exp~fanations for the 
preferential dissolution of silicon at the pore tips have 
been suggested. Deposition of passivating silicates on 
the pore walls [5] and depletion layer formation [6] 
are the more accepted ones. These models do not 
explain all the experimentally known features of por- 
ous silicon formation. The finite diffusion length 
(FDL) model has been suggested to be a successful 
model for theoretical description of porous silicon 
formation [7]. The nanostructured morphology of 
porous silicon has similarities to computer simulated 
patterns generated by the FDL model [8]. The 
simulated patterns for small values of finite diffusion 
length resemble the experimentally observed structure 
of porous silicon formed on p-type silicon, while for 
larger values of finite diffusion length the simulated 
patterns are similar to the experimentally observed 
porous silicon structures formed on n-type silicon. 

The Eden and diffusion limited aggregation (DLA) 
model are being investigated for describing growth of 
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clusters and aggregation phenomena [9, 10]. Both of 
these models describe non-equilibrium phenomena 
and the rate controlling step of aggregation differenti- 
ates between these mode~. The Eden model generates 
compact clusters and relates to phenomena which are 
surface reaction rate controlled, while the DLA model 
describes diffusion rate limited phenomenon. The 
FDL model has been suggested to be a more general- 
ized model [11] by the incorporation of a finite and 
variable diffusion length from which the particles be- 
gin their random walk. This model considers a n- 
dimensional random walk of a particle in the presence 
of a concentration gradient. The time dependent diffu- 
sion equation for the one-dimensional concentration 
gradient is 

~C(x, t) 82C(x, t) 
- D - -  (1 )  

8t 8x 2 

where, C(x, t) is the concentration, x is the distance 
from the interface, t is the time and D is the diffusion 
coefficient, which is assumed to be independent of 
concentration. The solution of the above differential 
equation can be obtained under different boundary 
conditions. If an infinite source of dopants diffusing 
into an infinite region is considered, the solution is 
given by 

C(x, t) x 
Co - erfc 2(Dt)~ (2) 

where Co is the concentration in the surface region. 
A diffusion length parameter L can be identified where 
the concentration is essentially the bulk concentration 

L = 3.6(Dr) ~ (3) 

The parameter L describes an isoconcentration profile 
from which there is equal probability to start a 
particle on its random walk towards the cluster. 
The mathematical equivalence between the spatial 
diffusion and electric fields leads to similarity in the 
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diffusion-based and depletion layer-based explanation 
of phenomena such as porous silicon formation. The 
equivalent of the diffusion length parameter L is the 
Debye length in electrostatics. 

In this paper we discuss the non-uniformities 
present in the isoconcentration profile from which 
particles are released in the F D L  model. These non- 
uniformities are observed even at small finite diffu- 
sion lengths. The FDL model has been implemented 
in the limit of zero finite diffusion length and the 
results are compared with compact Eden clusters 
generated by another algorithm. 
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2. Computer algorithm 
Two algorithms have been used in this study: the first 
is similar to the FDL model and the second is the 
algorithm for generating Eden clusters. These models 
require the availability of pseudo-random numbers 
with good statistical properties. We have generated 
these random numbers by the Tausworth shift gener- 
ator [123 with modifications of Kirkpatrick and Stoll 
[13]. This method generates random numbers by per- 
forming an exclusive-OR operation (equivalent to ad- 
dition in Galois field) on random numbers stored 
in an array. 

The details of the algorithm used for generating 
constant density non-fractal structures are similar to 
the description of the FDL model [7], though in our 
implementation the finite diffusion length was meas- 
ured from available peripheral sites rather than from 
occupied sites. This has more physical meaning since 
the diffusing particles would become part of the ag- 
gregate on contacting an available peripheral site. 
These details are discussed with reference to Fig. 1, 
which illustrates the occupied sites, available sites and 
unavailable sites for a diffusing particle beginning its 
random walk towards the cluster. The tree-like bran- 
ched structures formed by the F D L  simulations are 
similar to the pores in the morphology of porous 
silicon. In the case of porous silicon formation diffu- 
sion is considered to limit the necessary reactants in 
the bulk of silicon from reaching the growing pore. 
Since the anodic dissolution of silicon requires the 
presence of holes, they can be considered to be the 
necessary diffusion limited species. Though such an 
assumption is not required and any diffusion-limited 
rate controlling reactant particle can be considered to 
be the necessary species. The details of the algorithm 
are: 

1. The silicon electrolyte surface width was taken as 
100 lattice units. All the locations on the first row of 
the lattice were considered as potential sites. 
2. The lattice was arranged in a horizontal "wrap 
around" configuration. This is important for generat- 
ing uniform clusters. 
3. The growth of porous silicon was simulated by 
releasing a particle from a distance of predetermined 
finite diffusion length L from the silicon-electrolyte 
interface. 
4. The set of all the lattice points at a vertical distance 
of L from the available peripheral sites of the growing 
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Figure 1 Illustration of aggregation pattern generated by the FDL 
algorithm. The finite diffusion length was chosen to be 10. The 
clusters grow from top to bottom. * occupied sites; . unoccupied 
sites; + permitted sites; ^ forbidden sites; # particle position. 

aggregate were termed as the "isoconcentration pro- 
file". The farthest peripheral site was chosen when 
more than one peripheral site was in consideration. 
5. The starting location of the particle was chosen at 
random from the set of all the available lattice points 
on the isoconcentration profile. 
6. The particles then executed a random walk on this 
two-dimensional lattice. If a peripheral site was en- 
countered during the random walk, this site was occu- 
pied and became part of the growing aggregate. If the 
occupied site was not in the interior of porous struc- 
ture, then the isoconcentration profile was extended 
by one lattice unit. If the particle wandered away to 
more than twice the diffusion length from the iso- 
concentration profile, the random walk of the particle 
was terminated without any effect on the aggregates. 
Another particle was then released. 
7. This process of release of particles from random 
locations from the isoconcentration profile was con- 
tinued till 1000 to 10 000 particles were added to the 
aggregate. 

The results of the implementation of this algorithm, 
taking the finite diffusion length as 10 lattice units, are 
shown in Fig. 1. The occupied lattice positions are 
shown by *. Note that the centre of the * is shifted up 
by half line spacing. The unoccupied lattice points 
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within the porous structure and contained by the 
isoconcentration profile are marked b y . .  The region 
shown by + extends 2 x 10 lattice units from the 
isoconcentration profile into the unoccupied lattice. 
The particle released from the isoconcentration profile 
is permitted to execute its random walk within the 
region marked by.  or + .  If a peripheral site (these are 
unoccupied sites around * and are also marked .) is 
encountered, it is occupied. The unoccupied lattice is 
represented by the symbol ^ . If the randomly walking 
particle encounters a the walk is terminated and 
a new particle is released. The symbol # shows the 
position of a particle that is about to be released. 

The algorithm for generating Eden clusters is differ- 
ent from the above description and the main points 
are listed below: 

1. The lattice size was 100x 150, but no "wrap 
around" was implemented in this lattice. 
2. The first row of the lattice was stored in an array 
of potential sites. The location to be occupied was 
chosen randomly from this array. The unoccupied 
peripheral sites were added to this array (avoiding 
duplication), while the occupied site was removed 
from the array. The next site to be occupied was again 
chosen randomly from the sites stored in the array. 
This procedure was repeated until a large aggregate is 
formed. 

This procedure is slightly different from the more 
established Eden algorithm where the starting site is at 
the centre of the lattice and the aggregate is away from 
the edges. In our case we start with all the surface sites 
as the potential starting locations so that a closer 
representation of porous silicon formation beginning 
from silicon-electrolyte interface can be achieved. 
This choice of potential starting sites also allows com- 
parison with the FDL model in the limit of zero finite 
diffusion length. 

3. Results and discussion 
The generation of porous structure by the FDL  model 
is dependent on the processes of random selection of 
particle release site on the isoconcentration profile 
and the nature of the random walk of the particles. 
The other factor is the magnitude of the finite diffusion 
length which also decides the morphology and the 
density of the resultant patterns, and it is this para- 
meter which can be selected before starting the simula- 
tion. The qualitative description of porous silicon 
growth by this simulation model can be obtained by 
studying the random motion of the particles in the 
lattice after being released from the isoconcentration 
profile. As the particle begins its random walk towards 
the aggregate, it is more likely to contact an available 
peripheral site that is near the tip of the growing 
aggregate. These sites near the tip have a much higher 
probability of occupation compared to sites that are 
deep within the porous structure. The porous silicon 
structure is then characterized by an "active zone", 
where a large number of particles contact an unoc- 
cupied peripheral site and a "frozen zone", which is the 
constant porosity region behind the active zone. The 
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morphology of the stable porous silicon structure is 
decided in the active zone. Hence, the width of the 
active region is an important parameter and can be 
measured by techniques that have been reported pre- 
viously [117. 

The structure of aggregates generated by our simu- 
lations of the FDL model are shown in Fig. 2(a-e). 
These patterns are generated for finite diffusion 
lengths of 0, 2, 5, 10 and 20. The patterns are filamen- 
tary in nature and appear to occupy the lattice uni- 
formly. The isoconcentration profile in all cases is 
non-uniform. In several cases "abrupt discontinuities", 
which are a few columns wide and many rows long, 
are present. The presence of such discontinuities does 
not appear representative of physical phenomenon 
such as porous silicon formation and seems to be 
a limitation of the F D L model. A qualitative explana- 
tion for the presence of non-uniformities is that 
the release of particles from random locations on the 
dynamic isoconcentration profile and their 
subsequent random walk to the aggregate, promotes 
clustering near the aggregate tip, which leads to 
formation of valleys that are more difficult to fill. In 
extreme cases the non-uniformities can be narrow and 
sharp and have been called "abrupt discontinuities". 
Fig. 3 shows the compact structure that is formed on 
implementing the Eden algorithm. Note that the 
occupied lattice sites are shown by *, which displaced 
up by half a lattice unit. Due to this the top portion of 
the * overlaps w i t h . ,  the symbol for the unoccupied 
lattice site of the upper row. The appearance of com- 
pact Eden cluster in Fig. 3 is clearly different from 
Fig. 2(a), which shows patterns generated for zero 
finite diffusion length and suggests that the FDL 
model cannot generate such compact clusters and 
hence cannot be considered as a generalized model 
which incorporates both the Eden and the DLA 
model. Fig. 4 shows the density profiles for the pat- 
terns in Fig. 2. The computation of the density was 
performed by using the scaling relationship for con- 
stant density structures [11] 

NV = W o x  (4) 

where N is taken as the total number of particles 
contained at a distance x. The parameter W is the 
lattice width, 9 is the density and x is measured 
from the silicon-electrolyte interface. The parameter 
u = lID where D is the fractal dimension. The density 
profiles shown in Fig. 4 are for finite diffusion lengths 
of 0, 2, 5, 10 and 20. The region of constant density 
is towards the middle portion of each curve and 
corresponds to the "frozen zone" of constant porosity 
in porous silicon formation. The interface at surface 
shows higher density, which is due to the high lattice 
occupancy in this region because of the planar starting 
profile. As the aggregate starts growing the probabil- 
ity of further growth near the tips increases causing 
shadowing of lattice sites in the interior. Thus the 
site occupancy for eacfi row declines resulting in 
a lower constant density region. The value of the 
constant density decreases as the finite diffusion 
length is increased. This suggests that at larger finite 
diffusion lengths the occupation of sites near the tips is 
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Figure2 Aggregation patterns generated with a finite diffusion 
length of(a) 0, (b) 2, (c) 5, (d) 10, (e) 20. The clusters grow from top to 
bottom. 

preferred, leading to growth at the tips and resulting in 
a lower site occupancy for each row. The patterns 
shown in Fig. 2(a-e) illustrate this by the increase in 
the vacant unoccupied sites between the growing ag- 
gregates, as the finite diffusion length is increased. 

The density profile for the zero finite diffusion 
length is very similar to the plots for other finite 
diffusion lengths. This curve is higher than curves for 
other diffusion lengths showing that there are more 
aggregating particles at each distance in this case. The 
value of the constant density is near 0.5 and clearly the 
corresponding pattern in Fig. 2(a) is not an Eden 
cluster. The formation of these clusters is shown by 
implementing the Eden algorithm. These results are 
shown in Fig. 3. To explain the differences in the 
morphology of Fig. 2(a) and Fig. 3, we compare the 
algorithms used in generating them. The F D L 
algorithm starts by considering all the locations of the 
first row as potential sites for occupation. Hence, in 
the case of zero finite diffusion length the starting 
isoconcentration profile is planar and contains all the 
sites in the first row. When the random location is 
selected on the isoconcentration profile, this location 
is immediately occupied and the isoconcentration 
profile is pushed down by one lattice unit. As the 
growth continues the occupied sites can shield some 
available sites. Since the isoconcentration profile is the 
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Figure 3 Pattern formed by implementing the Eden algorithm. The 
clusters grow from top to bottom. 

1.1 

1 

0.9 

0.8 

.# 0,7 

0.6 

a 0 .5  

0.4 

0.3 

0.2 

0.1 

0 
0 20 40 

I 

60 80 100 120 140 

Distance 

Figure 4 Density versus distance curves for finite diffusion lengths 
of ([3) 0, ( + ) 2, (~) 5, (A) 10 and ( x ) 20. 

set of all the sites which are one lattice unit below 
farthest occupied sites (i.e. at a distance of zero lattice 
units below the farthest available peripheral site), the 
shielded locations are no longer in the set of sites on 
the isoconcentration profile. These locations have no 
chance of being occupied, since in the zero finite 
diffusion length condition no possibility of diffusing to 
an interior location exists and a selected site is 
considered immediately occupied. We call this the 
problem of "sinking isoconcentration profile". This is 



the reason for the rarefied patterns seen in Fig. 2(a). In 
the case of Eden algorithm the set of initial available 
sites is the first row. These are stored in an array of 
potential sites. After the first site is occupied, all the 
unoccupied peripheral sites of the just occupied site 
are also stored in the array of potential sites, while the 
site that has just been occupied is removed from this 
array. As a result even the unoccupied sites that have 
been surrounded from all sides by occupied sites 
remain on this array of potential sites. Clearly the 
array of potential sites in the Eden algorithm is not the 
same as the isoconcentration profile in the F D L 
algorithm. The formation of compact clusters by the 
Eden algorithm is because the array of potential sites 
does not have the problem equivalent of "sinking 
isoconcentration profile" that is inherent in the F D L  
model. 

The density-density correlation function [14, 15] 
for the structures generated by DLA and other similar 
models is given by 

( p ( r '  + r)p(r ')) ~ r ~  (5) 

where p is the density, d is the space dimension and 
D is the Hausdorff dimension. The plot of number of 
aggregating particles versus distance is expected to 
be linear on a double log scale. The results shown in 
Fig. 5 are plots of log~ (number of particles) versus 
log~ (distance) for the five chosen diffusion lengths. 
The constant density regions of plots in Fig. 4 corres- 
pond to the central regions of constant non-zero slope 
on the double log plots. The slope is in the range 
1 _+ 0.1, in agreement with Smith and Collins 1-11], 
and corresponds to the "frozen zone" in the case of 
porous silicon formation. The curve for zero finite 
diffusion length is very interesting. It shows similar 
features to the curves having non-zero finite diffusion 
lengths, the curve for zero finite diffusion length is the 
result of a single stochastic process, while the curves 
for all other non-zero finite diffusion lengths are the 
outcome of two stochastic processes. These are the 
random selection of sites on the isoconcentration 
profile and the random motion of particles in the 
lattice. We suggest that the frozen zone slope 
deviations of the curves for non-zero finite diffusion 

lengths compared to the curve for zero finite diffusion 
length are due to the effect of particle diffusion in the 
lattice. The difference in the number of particles at the 
same distance inside the frozen zone is because all the 
released particles find available sites for occupation in 
the case of zero finite diffusion length condition, while 
for all non-zero finite diffusion lengths some particles 
may not reach the growing aggregate at all. 

4. Conclusions 
We have described the details of implementation of 
the F D L algorithm on a 100 x 150 lattice. The results 
for all the finite diffusion lengths show that the isocon- 
centration profile is non-uniform and these non-uni- 
formities increase with the finite diffusion length. In 
several cases abrupt discontinuities are present in the 
isoconcentration profile. The density profiles for all 
the finite diffusion lengths show similar features. The 
constant density portion in these curves corresponds 
to the frozen zone of the porous structure. The double 
log plots show that the slope in the frozen zone is 
nearly equal to 1. The clusters that are generated by 
the F D L algorithm for zero finite diffusion length 
condition are not found to be compact and the reason 
for this is suggested to be due to "sinking isoconcen- 
tration profile". The Eden algorithm has also been 
implemented and has been shown to generate com- 
pact clusters. The differences between the two algo- 
rithms have been discussed. 

In view of our results we conclude that the FDL 
model cannot be considered to be a generalized model 
of aggregation, which can generate Eden clusters in 
the limit of zero finite diffusion length. The presence of 
abrupt discontinuities in the isoconcentration profile 
of several simulations of the F D L model appears to be 
a limitation of the model in describing physical 
phenomena such as porous silicon formation. 
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